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Within contemporary architectural design 
the form – rule relationship is often un-
derstood as the application of geometric 
rules in a generative process of form-fin-
ding, that is rules are a logico-algebraic text 
out of which architectural form emerges 
through the manipulation of data. By loo-

king at the etymological roots of mathe-
matics another reading of geometry can 
be uncovered that relates geometry back 
to bodily experience and the question of 
spatial orientation. This enables the re-int-
roduction of the body into contemporary 
discourse of digital architecture. 
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… there is geometry  
in architecture
Toni Kotnik

Architects do not produce geome-
try, they consume it. Such at least 
would be the inevitable conclusion 
of anyone reviewing the history of 
architectural theory.“ 

Robin Evans
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1. Introduction
In his introduction to his study on the re-
lationship of projective geometry and ar-
chitecture the historian and theoretician 
Robin Evans pointed out that “geometry 
is one subject, architecture another, but 
there is geometry in architecture.  … 
Geometry is understood to be a consti-
tutive part of architecture, indispensable 
to it, but not dependent on it in any way. 
The elements of geometry are thus con-
ceived as comparable to bricks that make 
a house, which are reliable manufactured 
elsewhere and delivered to site ready to 
use. Architects don’t produce geometry, 
they consume it [1].” 
	 Over the past two decades, the ar-
chitectural consumption of geometry 
has been intensified with the emergence 
of new methodologies in architectu-
ral design that exploit the computer 
as a design tool. This has generated a 
varied set of digital skills and a new 
type of architectural knowledge and 
has led to a re-examination of cur- 
rent design theories [2] due to the 
unavoidable changes of discipline-imma-
nent thinking by means of computation 
[3]. With the integration of the computer 
into the design process, Evan’s geometric 
bricks have been transformed into Tu-
ring-machines, i.e. simple abstract devices 
as representation of computable mathe-
matical functions that mediate between 
input and output [4].
 	 The consumption of geometry by 
todays digital architecture, therefore, is 

characterized by a turning towards quan-
tification of causal relationships between 
architectural entities and the algorithmic 
description of their interaction [5].

Such need for quantification of causal re-
lationships in a digital design process mir-
rors the shift in the sciences from an Aris-
totelian thinking to a Galilean thinking in 
the 17th century. This paradigmatic shift 
was characterized the replacement of 
metaphysical explanations for the neces-
sity of an observed causality by the quan-
titative recording of phenomena by me-
ans of measurable entities like the change 
in the distance between points over time 
[6]. Galilei explained his method of quan-
tification of nature in detail in his book 
Discorsi e dimostrazioni matematiche, 
intorno a due nuove scienze, published 
in 1638 despite an existing ban by the 
church. Completed and refined in 1687 
by Isaac Newton’s Philosophiae naturalis 
principia mathematica the Galilean me-
thod turned out to be so powerful that 
already one century later it was seen as 
unquestionable cornerstone in the scien-
tific study of nature.

The digital in architecture, thus, has the po-
tential to introduce scientific thinking and 
methodology into the design process [7].  
At the same time, it causes an already 
ongoing shift in the understanding of the 
role of geometry in architecture. With 
the need for quantification of causality 
geometry transforms into a descriptive, 

logico-algebraic text for the emergence 
of architectural form out of the manipu-
lation of data. 

2. Mathemata
Such a formalistic reduction of ma-the-
matics, however, does not reflect the 
essence of mathematics. Already Hus-
serl had pointed out that the scientific 
method of quantification of causal rela-
tionships is an emptying of mathematical 
thinking [8]. Etymologically, mathematics 
has its roots in the Greek ta mathemata, 
which means what can be learned where 
learning, mathesis, is about the recogniti-
on of the unchanged, the stable, of the 
Being in a world of constant Becoming [9]. 

For Heidegger “this genuine learning is an 
extremely peculiar taking, a taking whe-
re one who takes only takes what one 
basically already has. … The mathemata, 
the mathematical, is that ‘about’ things 
which we already know. Therefore we 
do not first get it out of things, but, in 
a certain way, we bring it with us [10].” 
Mathemata, therefore, is bound to the 
human perception and its ability to iden-
tify reoccurring pattern. 

Mathematics is the science of patterns! 
It is about the examination of numerical 
patterns, patterns of shape, patterns of 
motion, patterns of behavior. They can be 
real or imagined, visual or mental, static 
or dynamic, qualitative or quantitative [11]. 
Mathemata is the human search for 

patterns as a means of orientation. The 
world is a construct whose main refe-
rence point is the here and now of the 
body. It is from the body that surroun-
ding reality is perceived, structured, and 
accessed [12]. In its original meaning, ma-
thematics is about relating the body with 
the world around. As such, mathemata is 
about orientation. 

The concept of orientation has its ety-
mological origins in this subjective quo-
tidian view of the world. The noun Ori-
entierung (orientation) is derived from 
the Middle High German orient, meaning 
“the east,“ and the Latin oriens, the par-
ticiple form of oriri, which means “to rise 
or go up.“ The orient as a description of 
the east is thus a reference to the rising 
sun [13]. The act of orientation is therefore 
always an act of positioning oneself in the 
environment and, as a result, of assuring 
oneself of one‘s own existence through 
alignment with the east; an act of positi-
oning oneself in relation to the rising sun.

Mathemata as the search for orientati-
on is therefore always a manifestation of 
being in the world, of integrating oneself, 
of creating borders, and giving oneself 
space. As an act of giving oneself space, 
orientation refers to the original medie-
val conception of space as rum, a cleared 
settlement site. According to Heidegger, 
space is that which is intrinsically marked 
out and placed within borders [14]. Ori-
entation can therefore be understood 
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as the active and constructive act of ap-
propriating the environment by setting 
boundaries.

3. Geometrein
In ancient Egypt, this setting of boundari-
es as a method of appropriating the en-
vironment was the main job of the geo-
meter (literally: “measurer of the earth“). 
Hero of Alexandria (c. 20-62 AD) writes: 
“As the old tradition teaches us, the ear-
liest form of geometry dealt with measu-
ring and dividing up estates, which is why 
it was called ‘land measuring.‘ It was the 
flooding of the Nile that gave the Egyp-
tians the idea of making measurements, 
because many pieces of property that 
were exposed at the edge of the river 
disappeared as the water rose and only 
reappeared after it had sunk. It was not 
always possible to determine who ow-
ned them [15].“

One of the oldest methods of orienta-
tion was this form of geometrization - 
the measurement of land by geometers 
called Harpedonaptae, or “rope stret-
chers“ [16]. Geometrein, the activity of 
measuring the land, can therefore be un-
derstood as a means of orienting oneself 
by creating space, as a carving out of 
physical space by setting boundaries. This 
was made particularly clear by the anci-
ent Egyptian foundation-laying ceremony, 
the “stretching of the rope,“ [17] which 
was the first practical act performed in 
temple construction. The sacred area 

was marked out by ropes and stakes, and 
the building‘s orientation and dimensions 
were set.

4. Euclidean geometry
The Egyptians‘ practical surveying skills 
were legendary and won the admirati-
on of the Greeks. Pre-Socratic thinkers 
such as Thales of Milet (624-546 BC) 
and Pythagoras of Samos (c. 572-490 
BC) traveled through Egypt to become 
acquainted with the skills and knowledge 
of Egyptian geometers. This knowledge, 
which was based on a set of constructs 
and special model cases, marked the start 
of the scientification of geometry and is 
reflected in the Elements, a systematic 
portrayal of the geometric knowledge of 
antiquity by Euclid of Alexandra (c. 365-
300 BC) [18]. 

Euclid traces all mathematical pro-posi-
tions back to five basic axioms that are 
known as the Five Postulates of Euclidean 
geometry: 1. A straight line may be drawn 
from any point to another. 2. A straight 
line segment may be extended indefini-
tely along a straight line. 3. A circle may 
be described with any point as its cen-
ter and any distance as its radius. 4. All 
right angles are identical. 5. Finally, if two 
straight lines intersect a third in such a 
way that the sum of the inner angles on 
one side is less than two right angles, then 
the two straight lines must at some point 
intersect on that same side if extended 
indefinitely.

The validity of the propositions in the 
Elements rests on the validity of these 
postulates. According to Euclid, this validi-
ty is self-evident and requires no further 
explanation. We can therefore assume 
that the postulates represent abstract 
descriptions of daily experience, including 
the daily experience of measuring land. 
After all, the first three postulates can be 
seen as directly formalizing the funda-
mental operations of the Harpedonap-
tae, the rope-stretching land measurers. 
The origins of the fourth postulate can 
also be understood in a similar way. The 
Egyptian geometers used both a rope 
divided into equal segments and a Pytha-
gorean triangle to measure a right angle 
[19]. This rope method enabled them to 
compare angles, even those that were 
non-adjacent [20]. Along with the formati-
on of straight lines and circles, the const-
ruction of triangles was one of the most 
important tasks in land surveying, and it 
is described in the fifth postulate. This 
explains how to determine the inter-
section point of two lines by extending 
them indefinitely – a method that can be 
compared to the sighting of points and 
the measurement of geometric shapes 
using a dioptra, an ancient surveying inst-
rument that Euclid mentions in his works 
on astronomy [21].

In view of these parallels between practi-
cal experience and theoretical abstrac-
tion, we can assume that, for Euclid, the 
evident nature of the geometric postu-

lates resulted from geometrein, that is, 
from the constructive act of measuring 
land. By means of logical connection – 
and building on the direct experience 
and empirical verifiability of geometry 
in everyday use – new statements are 
possible that can doubtless be interpre-
ted as statements about physical reality. 
One can therefore say that in Euclid‘s 
work, logical thought as a method of 
derivation does not transcend the direct 
experience of the environment but is 
congruent with it. Consequently, Euclid‘s 
Elements exemplifies a form of ancient 
thought that is characterized by the as-
sumption of a fundamental and absolute 
agreement between subject matter and 
its nominal determination. Conceptual 
understanding is equivalent to physical 
understanding. Euclidean geometry is 
geometrein, method of measuring land 
by means of logical thought; an act of 
physical orientation based on the creati-
on of an intellectual structure.

5. Metrics
Nevertheless, the knowledge and skills 
involved in land measurement were not 
developed to enable people to orient 
themselves by creating geometrically 
structured spaces. They resulted from 
the Egyptian taxation system, which im-
posed taxes based on the size of the far-
med land. It is precisely this quantitative 
determination of size that is impossible 
in Euclidean geometry, since its postula-
tes merely allow us to understand – in 
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a step-by-step fashion – how geometric 
figures are formed without making any 
statement about dimensions. Constructs 
of Euclidean geometry are therefore sca-
le-independent and merely describe the 
relations between different geometric 
elements [22].

  Only when geometry is contextualized 
does it become a real orientation aid in 
physical reality, and only when geometric 
constructs are linked to the experienced 
human scale does Euclidean geometry 
become geometrein. The introduction of 
metrics, that is to say, a system for defi-
ning spatial dimensions, made it possible 
to transpose geometry into space and 
allowed people to orient themselves by 
means of the structure of the spatial en-
vironment, with their position as the cen-
tral reference point [23].

The limits of Euclidean geometry illustra-
te that the act of orientation, as an active 
measurement of surrounding space, de- 
termines a structure that is both geo-me-
tric and metric in nature. Both structures 
can be understood as cognitive structu-
res of knowledge generated by percep-
tion and experience – structures that, as 
individual patterns of action, shape the 
individual perception of the world, the 
world view or weltanschauung, and, con-
versely, that impinge on perception [24]. 

Spatial orientation, which results from 
this subjective world view, is therefore 
also subjective. 

  A shared world view emerges only 
when individual world views are com-
pared, since as social beings humans al-
ways orient themselves to fellow human 
beings and their orientation behavior. 
Socially accepted orientation behavior is 
therefore based on a social construct of 
reality [25].

6. Riemann Manifolds
This comparison of individual structures 
formed the conceptual foundation for the 
advancements in geometry made in the 
work of Bernhard Riemann (1826-1866). 
The concept of the “manifold“ described 
in his 1854 habilitation lecture „Über die 
Hypothesen, welche der Geometrie zu 
Grunde liegen“ („On the Hypotheses 
Which Lie at the Basis of Geometry“), 
is based primarily on the work of Johann 
Friedrich Herbart (1776-1841), who suc-
ceeded Kant as professor in Konigsberg 
[26]. According to Herbart, as people 
move through space, they have a vari-
ety of perceptions that do not have an 
immediate effect on consciousness. Her-
bart argues that these perceptions un-
dergo a „graded fusion“ in the mind [27]. 

This process of fusion, which Herbart de-
scribes as having serial form, „glues“ to-
gether the individual perceptions to form 
a holistic geometric image and cognitive 
knowledge-structure without abrogating 
the individual perception.
  Riemann‘s idea of manifolds renders 
Herbart‘s psychological concepts more 
concrete and precise for mathematical 

application. A manifold consists of a large 
number of local maps - that is, descrip-
tions of a limited environment based on 
Euclid‘s ideas about space. The sum of all 
these local manifold maps describes the 
sum of cartographically defined points 
and is called an atlas. Furthermore, for the 
maps of contiguous spatial regions there 
exists a transformation rule that clarifies 
transitions from one map to another by 
adapting local metrics. In this operation 
the local maps become increasingly dis-
torted along their edge, which means 
that dimensions are continually changed 
in order to facilitate a seamless, smooth 
transition between maps.
  Riemann‘s concept of manifolds uni-
versalizes a form that we are familiar with 
from cartography: atlases as collections 
of maps and abstract geometric images 
of the earth. Maps of contiguous regions 
must be successively overlaid, twisted, and 
distorted in order to piece together a 
collection of images that form a compre-
hensive image of the earth (the globe). 
The manifold is therefore a mathematical 
construct that is meant to facilitate the 
study of the interaction between local 
and global geometry by rendering metric 
structures more flexible.

7. Computability
Euclid‘s geometry and its universalized 
form in Riemann‘s manifolds are ex-
amples of how mathematical concepts 
can be created by formalizing the act of 
orientation. With the integration of com-

puters into the design process, we can 
observe again a fundamental shift in the 
conception of geometry, a shift visible in 
the emergence of  computational geo-
metry [28].

This conceptual shift is caused by the fact 
that computers are actively shaping the 
way we as users approach design ques-
tions. It was Merleau-Ponty who pointed 
out that as humans have to see our bodies 
not only as the physical context or mili-
eu of cognitive mechanisms, but also as a 
living, experiential structure that is both 
biological and phenomenological [29]. 

Human understanding of the world, there-
fore, depends in large part on the interac-
tion of the body with its environment [30]. 

Every tool mediates this interaction be-
cause of its specific usage, thereby influ-
encing the perception of the user and his 
way of thinking. The paradigmatic chan-
ges in many scientific disciplines demons-
trate that this is true in particular for the 
computer despite the seemingly unspeci-
fic neutrality of the machine that enables 
its versatile application.

Using a computer always means, wit-
hout exception, the necessary limitation 
on computable functions as mediator 
between input and output [31]. The pur-
pose in the integration of computers as 
tools into the design process lies in the 
conscious exploration of the potential 
of the defining elements of a computab-
le function as design tools: of the formal 
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relationship between sets of entities, of 
quantifiable properties of these sets of 
entities, and of algorithmic transforma-
tions and interaction of different quan-
tifiable properties. Digital design, thus, 
is not about the formalization of design 
processes or the automatization of de-
cision making like for example in William 
Mitchell’s The Logic of Architecture [32] 
but about the interaction of formal pro-
cesses with architectural thinking; it’s not 
about computerization but much more 
about computation [33].

   As Kostas Terzidis puts it: “Computation 
is about the exploration of indetermina-
te, vague, unclear, and often ill-defined 
processes; because of its exploratory na-
ture, computation aims at emulating or 
extending the human intellect. It is about 
rationalisation, reasoning, logic, algorithm, 
deduction, induction, extrapolation, ex-
ploration, and estimation.”  When Alan 
Turing formalized the idea of computa-
tion in the 1930s he had in mind a de-
scription of the process of calculation by 
human beings or as Wittgenstein descri-
bed it: “Turing’s ‘Machines’. These machi-
nes are human who calculate [34].” This 
means, computational thinking has to 
be seen as the logical exploration of the 
space of the possible, as rational measu-
ring of the imaginable. 

8. Conclusion
Looking at the development throughout 
history we can conclude, that the abs-
tract nature of geometry is not so much 

the expression of pure logic as it is an 
attempt to make human perception and 
experience more conceptually precise 
and transform them into geometrein 
in the sense of creating orientation in 
space through the act of measurement. 
The different resulting spatial ideas are 
the product of the different metrics of 
measurement: starting point of Euclide-
an geometry is the abstract technique 
of measuring the physical environment, 
Riemann‘s manifolds are based on the 
cartographic measurement of an internal 
cosmos of the imagination, and Compu-
tational Geometry is based on the pro-
cedural measurement of the thinkable . 
From the haptic geometry of antiquity, 
to the visual geometry of modernity, and 
the imaginable geometry of contem-
porary times we can see formalizations 
of various means of measurement of the 
space of human existence.  

In general, the act of measuring is always a 
political act, a reorientation within political 
space. This is made especially apparent by 
developments in the eighteenth century, 
when measurement became a central 
perceptual category in academic and po-
litical discourse. The impressive precision 
and self-evident nature of numbers made 
them a seemingly objective yardstick for 
political action and the favored medium 
for political communication [35]. The abs-
tract nature of the concept of measure-
ment in Riemann‘s work, together with 
the observed shift of physical space into 

perceptual space, opened the way for an 
extension of the concept of space and 
the application of spatial thought to social 
and cultural phenomena [36].

It therefore cannot surprise that the con-
cept of Riemann’s manifold and the rhi-
zome as its discrete version is of crucial 
importance for Gilles Deleuze and Felix 
Guattari in their study of contemporary 
culture summarized in A Thousand Pla-
teus: Capitalism and Schizophrenia [37]. 
Through a layering of seemingly unrela-
ted subjects a “graded fusion” is provoked 
out of which a holistic but individual pic-
ture of society, a so-called body without 
organs, emerges. Not unlike Heidegger’s 
mathemata this results in a world that 
“begins to signify before anyone knows 
what it signifies; the signified is given wit-
hout being known [38].”

Inspired by this thinking, Greg Lynn has 
been trying to argue for a new kind of 
understanding of geometry in architec-
ture; one that is no longer tied to a tran-
scendental value system, but is an ade-
quate expression of the contemporary 
reality [39]. His valid critic of the traditio-
nal use of geometry as symbolic langua-
ge, however, has not led to a rethinking 
of the relationship between body and 
geometry but rather to a replacement 
of systems of proportions as guidelines 
for classical geometric constructions by 
a system of parameters and weights as 
guidelines for constructions in NURBS-

geometry [40]. That is, Lynn has merely 
replaced one system of quantification by 
another system of quantification and to 
some extend reconstructed the Galilean 
method of quantification in the realm of 
digital architecture. This has strongly influ-
enced our contemporary understanding 
of geometry and the incorporation of 
environmental context into the design 
process by means of measurable physical 
entities like wind pressure, sun angle or 
heat differences.      
	 Measuring space is a central activity 
for structuring our surroundings and an 
important orientation element in the 
human environment. However, this en-
vironment must not be understood in a 
limited way as the purely physical envi-
ronment. It must be seen more broadly 
and comprehensively as a multilayered 
perceptual and experiential space. This 
expanded understanding of space and 
the incorporation of the subject into 
space transforms measurement into an 
act of individual orientation. The impor-
tance of such bodily measuring of space, 
of geometrein, is not only justified by 
philosophers like Heidegger, Merleau-
Ponty or Deleuze but also by develop-
ments in contemporary neuroscience. 
What emerges is an understanding of 
architecture as a primarily emotional 
and perceptual experience grounded 
in biological values that have to be put 
forward in the design process [41]. What 
is needed is a new mathesis of architec-
tural geometry. 
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