
1

Digital Architectural
Design as Exploration of
Computable Functions
Toni Kotnik

issue 01, volume 08international journal of architectural computing

2

Digital Architectural Design as Exploration
of Computable Functions
Toni Kotnik

ABSTRACT

In recent decades, new methodologies have emerged in architectural
design that exploit the computer as a design tool.This has generated a
varied set of digital skills and a new type of architectural knowledge.
However, up to now, a theoretical framework is missing that would
allow for a comprehensive pedagogical agenda for the teaching of digital
design in architecture.The present paper offers an attempt towards
such a theoretical grounding based on the concept of computable
functions.This approach results in an abstract and formal perspective
on digital design that enables a grouping of contemporary digital design
methods and an understanding of their logical relationship. On a
theoretical level, it opens a path for the study of the mechanism that
facilitates the transfer of concepts from various scientific disciplines
into architecture.

� Figure 1. Paradigmatic shift in

physics and related mathematical

concepts in digital design.

3Digital Architectural Design as Exploration of Computable Functions

1. Introduction

In 1963, Ivan Sutherland’s Sketchpad program demonstrated that computers
could be used for drafting and modelling [1]. By the mid-1990s, architectural
practice without graphics software had become unimaginable, and today,
digital design technologies have been adopted almost universally as the
predominant means of production in architectural practice. Furthermore,
digital technologies have enabled new methods of design, which has led to a
re-examination of current design theories and educational concepts [2,3].
That is, architecture is taking part in an “intellectual revolution [that] is
happening all around us, but few people are remarking on it. Computational
thinking is influencing research in nearly all disciplines, both in the sciences
and the humanities. . . . It is changing the way we think.” [4]

A good example of such reshaping of discipline-immanent thinking by
means of computation is the paradigmatic shift in sciences like physics or
biology caused by the introduction of the computer as the primary tool for
simulating and modelling natural processes [5]. Since the 1950s, this has
resulted in a successive modification or even replacement of reductionism
as the predominant paradigm of research.That is, the mechanistic
understanding of nature and the continuous top-down reduction of the
whole into parts has been exchanged from patterns of local interaction to
the overall global arrangement of the parts as an emergent bottom-up
property of the overall system (Figure 1). It is not surprising that architects
became interested in these systemic models of nature due to related new
methods of organisation and form-generation provided by computers and
appropriate software [6].As a result, over the past decade, systemic notions
and concepts from science have diffused into architectural discourse and are
currently being explored for design purposes [7,8,9].

The computer itself as the main bearer of this “intellectual revolution”,
however, is not part of the ongoing discourse on the digital in architecture.
It is overlooked constantly; the machine and its functionality is the blind
spot of change. Computers, however, are actively shaping the way we as
users approach design questions. It was Merleau-Ponty who pointed out
that we as humans have to see our bodies not only as the physical context
or milieu of cognitive mechanisms, but also as a living, experiential structure
that is both biological and phenomenological [10]. Human understanding of
the world, therefore, depends in large part on the interaction of the body
with its environment. Every tool mediates this interaction because of its
specific usage, thereby influencing the perception of the user and his way of
thinking [11].The paradigmatic changes in many scientific disciplines
demonstrate that this is true in particular for the computer despite the
seemingly unspecific neutrality of the machine that enables its versatile
application.

Starting point of the following investigation is the functionality of the
computer that is a closer look at the basic concept which enables its
versatile application.As a physical machine, computers have their origin in
John von Neumann’s design principles for a computing machine.These
principles are implementations of Alan Turing’s more general abstract
conception of computation and the related idea of a universal machine [12].

2. Computable function

The versatility of a computer is built upon the generality of its main
constituents: a machine, hardware, manipulating data according to a set of
instructions, software. In this general setting, every piece of data takes the
form of a finite sequence of bits, which is why it can be coded as a natural
number.Thus, a program p can be viewed as a partial function on the set of
natural numbers N meaning a function defined on a subset Para N with
output out Var N as the result of a computation of the input in
Para, that is p(in) = out.

It is this abstract setting for a computing device that facilitates the
principal question of computability, i.e., for which function f does there exist
a program p such that f(in) = p(in) for every valid input in N.This
question existed prior to the invention of modern digital computers. In the
1930’s, various mathematicians, including Alonzo Church, Kurt Gödel and
Alan Turing, started to develop precise, independent definitions of what it
means to be computable in order to find an answer to the
Entscheidungsproblem, a mathematical challenge posed by David Hilbert in
1928 [13].The problem asks for an algorithm that will take as input a
description of a formal language and a mathematical statement formulated
in this language and produce as output a Boolean value according to
whether the statement is true or false. Church and Turing both were able to
show that in general a solution to the Entscheidungsproblem is impossible, a
result know as the Church-Turing theorem [14,15].

∈

∈⊆∈
⊆

4 Toni Kotnik

Intuitively, a task is computable if one can specify a finite sequence of
instructions that when followed will result in the completion of the task.
This intuition must be made precise by defining the capabilities of the
machine that is to carry out the instructions because machines with
different capabilities may be able to complete different sets of instructions,
and therefore, may result in different classes of computable functions.
However, it is a remarkable mathematical fact that all of the different precise
definitions of computability lead to the same class of functions. In a practical
sense, this means that if one can provide an intuitively convincing formal
description of a step-by-step computation of a function, then one can find
an algorithmic procedure in one of the precise definitions as well.This
somewhat vague formulation is a commonly accepted hypothesis known as
Church-Turing conjecture [16].

A by-product of Alan Turing’s publication on David Hilbert’s
Entscheidungsproblem was an abstract mathematical machine-like model
of what it means for a function to be computable as well as the description
of what is now called a Turing machine [15].This simple abstract device is
one of the earliest and most intuitive ways to make the intuitive idea of
computability precise, and the underlying logic is closely connected to
the later development of computers.

� Figure 2.Abstract Turing model of

computability.

5Digital Architectural Design as Exploration of Computable Functions

A Turing machine T consists of an infinite one-dimensional tape divided
into cells, a movable read-write head with a specified starting position, and a
table of transition rules (Figure 2). Each cell of the tape contains one
symbol, either 0 or 1, and the head can move along the tape to scan one
cell at a time and perform three different activities:

• READ: read the content of the cell,
• WRITE: change the content into the opposite, and
• MOVE: advance to the next cell to the right or left along the tape.

A table of transition rules serves as the program for the machine. Each
rule has a quadruple <stateactual,symbol,action,statenext> meaning. If the
machine is in stateactual and the current cell contains symbol then take action
MOVE or WRITE and move into statenext. The transition rules are labelled as
staten, and the execution of the program consists of the successive
transition from one state to another. Furthermore, the program terminates
if it reaches a situation in which there is not exactly one transition rule
specified for execution [17].Turing machines are very basic but powerful

devices, and it can be proven that for every partial function f defined by a
program p there exists a Turing machine T with f(in) = T(in) for every
input in Para .

In general, a mathematical function f is a well-defined relationship
between two sets A, the domain, and B, the codomain, i.e. for every x A
there exists exactly one y B with f(x) = y.Turing’s computable function
are mathematical function which, in addition, are quantifiable and
algorithmic.That is the domain and codomain are subsets of the natural
numbers N and the relationship between elements can be described
through a sequence of simple formal rules.Already Turing himself was able
to show that there are examples for relationships between two sets of
natural numbers which are not computable [15].That is the notion of a
mathematical function is much more general than the concept of
computability. However, the above discussion on Turing machines shows that
everything that can be done on a real computer can, at least in principle, be
formulated as Turing machine as well.

As a consequence, using a computer always means, without exception,
the necessary limitation on computable functions as mediator between
input and output.At the same time the set of computable functions is rich
enough to allow for versatile applications of computers and to foster
changes in the way we understand and think about design problems in
architecture.

3. Formal description of design

Like every mathematical function, a computable one defines a relationship
between two sets using a fixed number of rules: the domain of the function
is the set Para of possible input, which is known as the parameter space in
architecture, gets mapped by the function onto the codomain, the set Var
of possible output, known as the space of variations.

Such an apparently abstract and theoretic description is a direct formal
translation of the way one works with computers and becomes obvious
upon drafting and modelling architecture using contemporary CAD-
software. Every task in such a system is governed by these three
constituents of a mathematical function: the activation of the tool, e.g., draw
a line, as algorithmic rules of transformation; the selection of a pair of points
as chosen element of the domain, which is the set of all possible pairs of
points in space; and the resulting graphic output, the line between the
points, as related elements of the codomain, which is the set of all possible
lines.

This simple example of drawing a line shows that one can view the
complete CAD-software as a finite collection of Turing machines {T1

cad, . . . ,
Tm

cad}, each one mediating between possible user input and consequential
output, which are typically in graphical form, and displayed on the screen
with every available tool of the software defined as a different Turing
machine Ti

cad. Consequently, the sequential process of drafting or modelling

∈
∈

∈

6 Toni Kotnik

architecture by means of CAD-software can be thought of as the successive
use of a finite number of Turing machines Ti

cad, and thus define a unique
sequence of Turing machines (T1

proj, . . . , Tn
proj) related specifically to the

project.The concatenation of these machines generates a new Turing
machine Tproj as a whole with project input as a subset of all earlier input,
i.e., in

proj in1
proj . . . inn

proj, and the displayed final model as the
project output, i.e., outproj = outn

proj. It is this process of designing through
formal nesting of Turing machines that constitutes the basis of the latest
generation of CAD-software, like Bentley’s Generative Component or the
Grasshopper plug-in for Rhinoceros.

Consequentially, even the mere representational use of computational
tools for drafting or modelling of architecture inevitably leads to a
mathematical description of the achieved form in terms of an algorithm;
however, this typically occurs unintentionally. But it is precisely the degree of
awareness of the computational background and its intentional use that can
be seen as the defining characteristics of digital design and at the same time
as a possibility to mark the threshold between digital and non-digital design
[2].This doesn’t mean that advances in human-computer interface design
have to be ignored. However, the proper design of menus and icons only
replaces the abstract and formal language of mathematics by a more intuitive
language of signs and forms [18]. But it doesn’t change the underlying logic of
mathematical functions; it doesn’t change the necessary degree of awareness
of the computational background and its intentional use.

The purpose in the integration of computers as tools into the design
process lies in the conscious exploration of the potential of the defining
elements of a computable function as design tools: of the formal relationship
between sets of entities, of quantifiable properties of these sets of entities,
and of algorithmic transformations and interaction of different quantifiable
properties. Digital design, thus, is not about the formalization of design
processes or the automatization of decision making like for example in
William Mitchell’s The Logic of Architecture [19] but about the interaction of
formal processes with architectural thinking; it’s not about computerization
but much more about computation [20].

4. Levels of design computability

Based on the formal description Tproj of digitally defined forms respectively
by looking at the acquisition of the constituent elements of the related
computational function f during the design process one can distinguish three
major levels of computational utilisation that can be defined as levels of
design computability: the representational, the parametric, and the
algorithmic (Figure 3).

A representational level is characterised by the utilisation of the
computational mainly as an electronic drawing tool.An example of such
an application is the design of the Kunsthaus Graz by Peter Cook and
Colin Fournier.There, NURBS have been used to digitally describe the

UU⊆

7Digital Architectural Design as Exploration of Computable Functions

shape of the outer skin of the museum based on an existing physical
model [21]. In a similar way Coop Himmelblau used modelling software
to represent and refine the oblique-angled crystalline form of the UFA
cinema in Dresden [22].

In both cases, the computer enabled the activation of a geometric
language that could not otherwise be controlled easily due to the
incongruence of the geometry with the standard projections used by
convention in architectural presentation [23].That means, however, on a
representational level there is no real perception of the computational
nature that governs the digital environment. Rather, the design process is
still in line with the visual reasoning of a conventional paper-based design
approach.What exists is merely an awareness of a potential extension of
the traditional geometric language of architecture that is present in the
invisible mathematical description of digital design tools, i.e. the recognition
of the existence of a relationship f between specific input in and unique
output out.

A parametric level is characterised by the utilisation of such a given
relationship f as a spectra of possibilities between input in and output out
by means of continuous variation along the parameter space Para.A well-
known example of this type of parametric variation is the design for the
Waterloo train station in London by Nicholas Grimshaw. In this design the
basic structure was a three-pin bowstring arch with an asymmetric
placement of the centre pin due to the geometry of the platforms and its
parametric propagation as a series of 36 identically configured trusses along
the length of the train shed [24,25].A more complex parametric interplay
between all of the various elements of the architecture was used in the
design of the Mercedes Benz Museum in Stuttgart by UN Studio [26].
There, the definition of the geometry of every single element of the building
is dependent on the basic layout of the trefoil figure.

On the parametric level there is already a clear understanding of the
existence of a computational relationship f between input in and output
out and its integration into the design process as a scheme of
interdependency between various parts of the design.The algorithmic

� Figure 3. Diagram of levels of digital

computability.

8 Toni Kotnik

description of the relationship, however, is not actively activated as design
tool.The relationship is fixed and the focus is rather on the possibility of
quantification of the input in that enables a controlled variation of the
output out.

An algorithmic level opens up this relationship between input and output
and is characterised by the utilisation of the formal description of f itself
and its application as a design strategy. One of the first built examples based
on an algorithmic design approach was the pavilion for the Serpentine
Gallery by Toyo Ito and Cecil Balmond.The use of an iterative subdivision of
adjacent sides resulted in a dense field of lines that defined the location of
structural members as well as the distribution of openings for the enclosed
cubic space [27].The design of the National Swimming Center in Beijing by
PTW Architects is another example of design development based on an
algorithmic construction of the underlying geometric structure.The formal
description of the space filling behaviour of foam bubbles and its abstraction
as Wearie-Phelan geometry enabled the use of complex polyhedral cells as a
construction system - a rational and efficient solution that appears to be
random [28].

On the algorithmic level, therefore, the focus is on the development of
computational design logic that is a sequence of algebraic, analytic, and
geometric operations for the manipulation of data and its translation into
architectural properties. It is the algorithmic description of the computable
function f itself and the possibility of an individualised overcoming of the
limitations of the inbuilt functionality of the used software.

All the definitions imply that the distinction between the three levels of
design computability is not based on an evaluation of the architectural
quality of the resulting design but rather on the level of understanding and
maturity in the exploitation of the computational nature of the digital tools.
That means the levels are not about forms but rather about forms of
thinking and these forms of thinking have to be seen as a means of measure
of digital craftsmanship that is a measure for the computational skilfulness in
the use of the tools [29].

Clearly, the distinction between the different levels of design
computability is gradual and they are opening up a spectrum of
computational involvement with the representational and algorithmic as
opposing poles.The above examples show that on the representational level
the involvement with computation is very low and the form of design
thinking is not driven by the computational at all. If digital design is defined
by design methods that are driven by an occupation with computability than
representational design methods have to be seen as non-digital.The spectra
of design computability, thus, comprise the transition from non-digital
towards digital design processes.

Parametric and algorithmic design computability are digital design
methods and as part of the spectra they mark an extension of traditional
non-digital design methods by computability. Kostas Terzidis has pointed

9Digital Architectural Design as Exploration of Computable Functions

towards such a characterisation of digital design by stating that ”recent
theories of form in architecture have focused on computational methods of
formal exploration and expression. . . . For the last two decades, designers
have been concerned with the use of computational mechanisms for the
exploration of formal systems.These practices have attempted to readdress
formal issues using new techniques and methods. Computational tools are
central protagonists in this exploration” [30].

5. From geometry to functional description

In a digital design process, attention shifts away from the form-generating
geometry itself towards the logic of the underlying computational function.
Already René Descartes has demonstrated the possibility of such a
transformation with the invention of analytic geometry, an algebraic
description of geometric forms and operations, first published in his Discours
de la Méthode in 1637 [31].And it is analytic geometry that enables the
functioning of CAD-software through the translation of geometric
operations into computational functions.This implies that, from a designer’s
perspective, every computational function f and every algorithmic
description T can be viewed as a generalised geometric operation.This
understanding offers the possibility to look at the history of architecture in
a new way and detect parametric and algorithmic potential in baroque
geometric constructions [32] or antiquity [33].

The computational generalisation of geometry allows for new forms of
creative expression since the use of computational methods in design
requires some formalization of design thinking.The concept of computation,
therefore, differs greatly from the concept of computerisation, which is a
process of automation and mechanisation of data handling.“Computation is
about the exploration of indeterminate, vague, unclear, and often ill-defined
processes; because of its exploratory nature, computation aims at emulating
or extending the human intellect. It is about rationalisation, reasoning, logic,
algorithm, deduction, induction, extrapolation, exploration, and estimation. In
its manifold implications, it involves problem solving, mental structures,
cognition, simulation, and rule-based intelligence, to name a few.” [20]

In digital design, the necessary formalization of design thinking by means
of a computable function results in a precise description of the causal
relationship f between input in and output out.The underlying notion of a
mathematical function was first introduced by Gottfried Wilhelm Leibniz in
1692 in order to describe quantities that vary along the parameterisation
of a curve [34].This notion of function differs from the notion of
functionality traditionally used in architecture. Functionality in an
architectural sense is, in general, not stated explicitly as a causal
relationship that can be computed, but is instead used more vaguely on a
conceptual level as a link between an often non-quantifiable architectural
purpose and its expression through form and materiality [35].That is,
functionality has to be seen as a design idea, i.e., an inner logic as driver of

10 Toni Kotnik

the design process, which results in an image of rationality, rather than a
computable field of formal relationships.

With the rise of digital design tools in architecture, a family of formal
strategies has emerged based on the use of of computable function to
questions of performance [36].These formal strategies constrain
architectural utilitas to a measure of fitness that is an algebraic combination
of quantifiable entities. In general, performative design approaches are driven
by the numerical output of a formula as a measure of performative fitness.
Consequentially, performative design strategies show a close affinity to
bionic engineering because of the similarity in design thinking, which in
both cases is based on the quantification of phenomena in nature [9,36].
From a theoretical point of view, such a turning towards nature is not
unprecedented, but rather a recurring theme that runs through architectural
history since Vitruvius [37].

For architectural design, the output-driven perspective onto the
computational function of a performative design strategy is a pitfall because
it encourages a tendency towards optimisation and with it, an
economisation and closing up of architectural thinking towards parametric
manipulation.The importance of an algorithmic description of the
computational function, however, does not lie in the possibility of computing
an optimal solution, but rather in the ability to control precisely the geometric
relation between architectural elements under consideration. Formal design
strategies are about the systematic exploration of the architectural potential
of new types of organisation and the rediscovering of “the jubilation brought
on by the perception of a hidden order, which Vitruvius’s disciple felt when
he came to perceive the power of proportions. . . .The poetics of
computation becomes a poiesis in the strongest sense of the term: an art of
procreation, . . . the architect becomes the demiurge of a world of forms in
perpetual evolution.” [38]

The notion of functionality in digital architecture, therefore, is not
normative like in a performative design strategy but rather operative and
comparable to the traditional vague understanding of functionality in
architecture.This means, the efficiency of a computational function as formal
design strategy has to be evaluated by architectural criteria, rather than
numerical ones.The formalization of design thinking by means of
computable functions cannot replace the design process but it can act as a
framework for a more systematic investigation into digital design strategies
used in architecture.

6. Digital design models

The investigation into the concept of computability and its importance for
digital design in architecture shows that the computer is not a neutral tool,
but rather is actively shaping the way designers are approaching the
question of design.The defining elements of a computational function, that is
a well-defined quantifiable and algorithmic relationship between two sets,

11Digital Architectural Design as Exploration of Computable Functions

have guided the definition of levels of representational, parametric, and
algorithmic computability.

These levels are sufficient to classify contemporary digital design
methodologies due to the limitation of all digital endeavours to
computational functions.An example for this thesis is the taxonomy
developed by Oxman [2]. In an attempt to organise current design theories
and methodologies, Rivka Oxman has proposed five paradigmatic classes
of digital design models according to various relationships between the
designer, the conceptual content, the design processes applied, and the
design object itself: CAD models, formation models, generative models,
performance models, and integrated compound models.

For Oxman, CAD models are descriptive by employing various
geometrical modelling and rendering software, but have little qualitative
effect on design thinking and are essentially isomorphic with paper-based
design methods.Thus, CAD models depict methods of digital design on a
level of representational computability. Formation models are defined by
Oxman as a structured geometric or formal digital process providing the
designer with a high level of digital interaction and control resulting in “a
performance of digital enabling that is perhaps the first charactering quality
of digital phenomena.” That is, for Oxman, formation models mark the
threshold between digital and non-digital design methodologies (Figure 4).
She subdivides the paradigmatic class further into topological models,
associative design models, and motion-based models. In all of these
subclasses, the interaction and control is based on the change of a set
of parameters incorporated into a fixed field of geometric relationships.
All formation models, therefore, are methods of digital design on the
level of parametric computability. Generative models of digital design
are characterised by Oxman by means of provision of a computational
mechanism for formalised generation processes.Accordingly, this
paradigmatic class is formed by methods of digital design on the level of
algorithmic computability.

� Figure 4. Levels of digital

computability and Oxman’s digital

design models.

12 Toni Kotnik

In Oxman’s approach, a performance-based design model is considered
as a process of formation or generation that is driven by a desired
performance.As a result, performance models do not form a set of
methods distinct from the other paradigmatic classes, but rather are a
subclass that stretches along formative and generative design models.That is
why Oxman differentiates between performance-based formation models

13Digital Architectural Design as Exploration of Computable Functions

and performance-based generation models. Performance models play an
important role in architecture with respect to the question of functionality
of the digital design, but they do not provide a new level of digital
computability due to the embedded nature of the class.The same is true for
compound models, which are defined as a class of future paradigmatic digital
design media.

7. Conclusion

The discussion on Oxman’s taxonomy of digital design methods
demonstrates that all of the various contemporary methodologies can be
subsumed and compared under the concept of computability and the
related concept of levels of digital computability (Figure 4). Furthermore, it
demonstrates that the computer is not a neutral tool, but rather is
actively shaping the way designers are approaching the question of design.
The abstract concept of a computational function has the potential to
serve as a theoretical framework for the conceptualization of digital
design and future surveys on the development of digital design methods
thereby answering a call “to formulate a theoretical framework that is
suitable to the conceptualization of the subject. Such a framework must
be capable of contributing a relevant theoretical structure to the field,
whereas its own theoretical disciplinary contents must also illuminate
seminal issues.” [2]

A mathematical function makes explicit the governing rules between
cause and effect. It is this characteristic that made the abstract concept of a
function into one of the essential rationales of modern mathematics
[39,40], and subsequently into the main objective in the ongoing process of
mathematisation of scientific disciplines like economy or sociology [41].
Similar to this process in other disciplines, one can observe a tendency
towards mathematisation of contemporary architectural discourse caused
by the utilisation of formal design strategies [6,7,8,9,42,43].

Linking methods of digital design with the concept of a computational
function offers a better understanding of such process of transfer of formal
mathematical concepts into architectural discourse.The acquisition of digital
methods into the design process has opened up a path along which
mathematical methods of investigation from fields like topology, differential
geometry, or complexity theory can diffuse into architecture. Concepts like
continuity and smoothness, differentiation, bifurcation, morphing, or self-
organization describe properties of mathematical functions that are now
being used as concepts in design processes (Figure 4).The levels of digital
computability enable a closer look at this process of diffusion and offer the
possibility of a theoretical grounding of the relationship between the
sciences and architecture on both the operative and theoretical levels.

Such abstract view of the digital in architecture opens up a new line of
theoretical discourse in architecture that differs from the traditional
metaphoric understanding of the relationship between architecture and the

sciences [44].The utilisation of the computer in architectural design offers a
solid foundation for the systematisation of knowledge and methods in
design. Computational functions make tangible The Formal Basis of Modern
Architecture that Peter Eisenman has started to explore in his famous Ph.D.
thesis in 1963, where he considered architectural form “as a problem of
logical consistency, in other words, as the logical interaction of formal
concepts” [45].With the introduction of the digital, therefore, one is able to
observe a major shift in architectural thinking towards formal methods that
will fundamentally change our perspective of architecture as an academic
endeavour and its relation to other disciplines like mathematics.

References
1. Kalay,Y. E., Architecture’s New Media: Principles,Theories, and Methods of Computer-

aided Design, MIT Press, Cambridge, 2004.

2. Oxman, R., (2006) Theory and design in the first digital age, Design Studies, 2006,
27(3), 229-265.

3. Oxman, R., Digital architecture as a challenge for design pedagogy: theory,
knowledge, models and medium, Design Studies, 2008, 29(2), 99-120.

4. Bundy,A., Computational Thinking is Pervasive, Journal of Scientific and Practical
Computing, 2007, 1 (2), 67-69.

5. Mussmann, F., Komplexe Natur - Komplexe Wisssenschaft: Selbstorganisation, Chaos,
Komplexität und der Durchbruch des Systemdenkens in den Naturwissenschaften,
Leske + Budrich, Opladen,1995.

6. Weinstock, M., The Architecture of Emergence:The Evolution of Form in Nature and
Civilisation,Wiley & Sons, Oxford, 2010.

7. Foreign Office Architects, Phylogenesis: FOA’s Ark,Actar, Barcelona, 2003.

8. Lynn, G., Animate Form, Princeton University Press, Princeton,1999.

9. Hensel, M. and Menges,A., Morpho-Ecologies:Towards Heterogenous Space In
Architecture Design,AA Publications, London, 2007.

10. Varela, F.J., The Embodied Mind: Cognitive Science and Human Experience, MIT Press,
Cambridge, 1991.

11. Gallagher, S., How the Body Shapes the Mind, Oxford University Press, Oxford,
2006.

12. Rojas, R. and Hashagen, U., The First Computers: History and Architecture, MIT Press,
Cambridge, 2000.

13. Davis, M., Engines of Logic, Norton & Company, New York, 2000.

14. Church,A.,An unsolvable problem of elementary number theory, American
Journal of Mathematics, 1936, 58, 345-363.

15. Turing,A., On Computable Numbers, with an Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society,
2nd Series, 1936, 42, 230-265.

16. Copeland, B., The Church-Turing Thesis, Stanford Encyclopedia of Philosophy, 2002.

17. Barry Cooper, S., Computability theory, Chapman & Hall, Boca Raton, 2004.

18. Sharp, H., Interaction Design: Beyond Human-Computer Interaction,Wiley & Sons,
New York, 2007.

19. Mitchell,W. J.,The Logic of Architecture: Design, Computation, and Cognition, MIT
Press, Cambridge, 1990.

14 Toni Kotnik

20. Terzidis, K., Algorithmic Architecture,Architectural Press, Oxford, 2006.

21. Bogner, D., ed., A Friendly Alien, Hatje Cantz, Ostfildern, 2004.

22. Coop Himmelblau, Planning of the UFA-Palast with CAD, in•form•Z, auto•des•sys
Newsletter, 1999, 14.

23. Szalapaj, P., Contemporary Architecture and the Digital Design Process,Architectural
Press, Oxford, 2005.

24. Szalapaj, P., CAD Principles for Architectural Design,Architectural Press, Oxford,
2001.

25. Kolarevic, B., ed., Architecture in the digital age: design and manufacturing, Spoon
Press, New York, 2003.

26. Un Studio and HG Merz, Buy Me A Mercedes-Benz,Actar, Barcelona, 2006.

27. Ito,T. and Balmond, C., Serpentine Gallery Pavilion 2002:Toyo Ito with Arup,Verlag
der Buchhandlung Walther König, Köln, 2002.

28. Pohl, E. B., Watercube:The Book, dpr editorial, Barcelona, 2008.

29. Sennett, R., The Craftsman,Yale University Press, New Haven, 2008.

30. Terzidis, K., Expressive Form:A conceptual approach to computational design, Spoon
Press, New York, 2003.

31. Descartes, R., Discours de la méthode pour bien conduire sa raison et chercher la
verité dans les sciences, Librairie Philosophique J.Vrin, Paris, 2005.

32. Saunder,A., Baroque Parameters, in Puglisi, L. P., ed., Theoretical Meltdown,Wiley &
Sons, Oxford, 2009.

33. Cache, B., Objectile: Fast Wood:A Brouillon Project, Springer, New York, 2007.

34. Kline, M., Mathematics in Western Culture, Oxford University Press, Oxford, 1953.

35. Curtis,W. J., Modern Architecture since 1900, 3rd edn., Phaidon, London, 1996.

36. Kolarevic, B. and Malkawi,A. M., eds., Performative Architecture: Beyond
Instrumentality, Routledge, New York, 2005.

37. Portoghesi, P., Nature and Architecture, Skira Editore, Milano, 2000.

38. Picon,A., Digital architecture and the poetics of computation, Metamorph: Focus,
la Biennale di Venezia,Venice, 2004, 58-69.

39. Scriba, C.J. and Schreiber, P., 5000 Jahre Geometrie, Springer,Wien, 2002.

40. Lawvere, F.W. and Schanuel, S. H., Conceptual Mathematics, Cambridge University
Press, Cambridge, 1997.

41. Kotnik,T., Das Experiment als Entwurfsmethodik: Zur Möglichkeit der Integration
naturwissenschaftlichen Arbeitens in der Architektur, in Moravansky,A. and
Kirchengast,A., eds., Experiments in Architecture, Jowis, Berlin, 2010.

42. Silver, M., Programming Cultures,Wiley & Sons, Oxford, 2006.

43. Sakamoto,T., From Control to Design: Parametric/Algorithmic Architecture,Actar,
Barcelona, 2008.

44. Picon,A. and Ponte,A., eds., Architecture and the Sciences: Exchanging Metaphors,
Princeton Architectural Press, New York, 2003.

45. Eisenman, P., The Formal Basis of Modern Architecture, Lars Muller Publishers,
Baden, 2006.

15Digital Architectural Design as Exploration of Computable Functions

16 Toni Kotnik

Toni Kotnik
Swiss Federal Institute of Technology
(ETH) Zurich
Faculty of Architecture
Wolfgang-Pauli-Str.15
8093 Zurich
Switzerland

kotnik@arch.ethz.ch

