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Summary 

This paper presents a new method for form finding of general strut and tie networks with no 
limitations to the direction of loads and the arrangement of nodes and members. Based on this 
generally applicable approach Curved Stress Fields are approximated, which are able to vividly 
describe internal forces of solid structural surfaces. Yield Stress Fields define bounds of the 
eccentricity of Curved Stress Fields towards the centre surface of a structure and thus allow a 
consideration of structural resistance in the form-finding process. 
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1. Introduction 

Techniques applied in statically motivated form finding of structural surfaces are changing from 
experimental to digital methods, as the effort made for the generation of digital models is 
considerably smaller. Irrespective of advances, which have been made in the field; research has 
been mainly focussed on statically optimal forms. However, in architecture the use of curved 
surfaces has dramatically changed over the last decades: from being statically dominated to an 
increasingly architecturally determined formal language. To consider both aspects, the architectural 
freedom of design and the engineer’s pursuit of efficient structures, the proposed Curved Stress 
Field method allows conscious deviations from the statically ideal form within the bounds of 
structural resistance. 

The design of reinforced concrete structures by stress fields has been a major inspiration for the 
proposed method of Curved Stress Fields. It was first sketched by Drucker [1] and much later 
refined to a practically applicable method by Muttoni et al. [2]. Compared to strut and tie models it 
allows a more detailed analysis of the behaviour of reinforced concrete structures subjected to in-
plane stresses, while achieving the same vividness. The method is based on the lower bound 
theorem of the theory of plasticity and a rigid-plastic material model. 

A Curved Stress Field is metaphorically speaking an infinitely tight network of thrust lines and 
funicular curves, which form a continuous, curved biaxial stress state. The generation of continuous 
Curved Stress Fields is possible [3, 4], but lacks practical applicability due to the mathematical 
problems connected to the solving of partial differential equations. Thus, to enable an intuitive and 



efficiently applicable tool a numerical approximation of Curved Stress Fields through curved strut 
and tie networks is proposed. 

2. Three-Dimensional Equilibrium of Strut and Tie Systems 

Thrust Network Analysis [5], which is a method for the generation of discrete compression-only 
systems, allows an intuitive control of the form finding process. It is based on a projective relation 
between a planar initial system and its equilibrated counterpart and uses Maxwell’s duality between 
the geometry of the initial network and its internal forces to intuitively control the member forces of 
the initial system. Thrust Network Analysis aims at form finding and analysis of vaults. A solution, 
which is compression-only and lies in between the defined intrados and extrados of a vault, is 
determined using a linear optimisation process. 

While vaults made of stones or masonry are limited to compression-only forms, reinforced concrete 
shells allow also tensile stresses. Besides concrete shells under pure compression, for many 
reinforced concrete shells a combination of compressive and tensile stresses is used to gain 
structural stability and great slenderness. Thus, a method, which is intended to be used for 
reinforced concrete structures, must include the possibility of considering tensile forces. 

The proposed approach for the determination of the form of a curved strut and tie network is a 
transformation of a kinematic initial system into an equilibrium state for a particular load case. The 
set up of the initial system defines the arrangement of nodes and members, while neither node 
positions nor lengths of members are fixed to their initial value. External loads and supports are 
assigned to the nodes of the initial system.  

2.1 Initial and Equilibrated System 

Initial member forces are assumed to be acting along members of the initial system. Within the 
scope of the proposed method an initial system does not have to meet equilibrium conditions, 
neither considering the applied external loads nor solely initial member forces. Thus, the magnitude 
of initial member forces is in general arbitrary. Exceptions to this supposition form initial systems, 
which are assumed to be a projection of the equilibrated system. The proposed definition of the 
relation between member forces of the initial and the equilibrated system illustrated in Fig. 1 forms 
the basis of the generation of the form of equilibrated strut and tie systems. 

 

Fig. 1: Definition of the relation between member forces of the initial (dashed lines) and the equilibrated 

system (solid lines); a) exemplary initial and equilibrated system (blue: compression members, red: 

tension members); b) relation between member forces of the initial and the equilibrated system 



The definition of the relation of member forces supposes that the ratio of their magnitudes is 
proportional to the ratio of lengths of the members. Equation (1) results from this basic assumption. 

 (1) 

2.2 System of non-linear equations 

At each node of the initial system an equilibrium condition can be formulated. The nodal 
equilibrium condition defines that the sum of all member forces and the applied external load must 
result in zero. Equation (2) shows the equilibrium condition for an exemplary node A. 

   (2) 

At an exemplary supported node C a vector of reaction forces is added to the equilibrium 
condition (3). 

  (3) 

The equilibrium conditions of all nodes of the initial system form a system of non-linear equations, 
when equation (1) is substituted for the vectors of the member force of the equilibrated system in 
equation (2) and (3).  

2.3 Control over the generation of strut and tie systems 

The parameters of the system of equations describe magnitudes of initial member forces, 
components of displacement vectors of nodes and components of reaction forces. When using the 
proposed approach the scalar parameters outnumber the scalar equations. Control over the 
generation process of an equilibrated strut and tie system is gained by assigning values to these 
supernumerary parameters. The number of supernumerary parameters coincides with the sum of the 
number of members and the triple of the number of supported nodes. The set of parameters, which 
is considered to be supernumerary, is not predetermined. Hence, besides the actual assignment of 
values the selection of a particular set of supernumerary parameters is also decisive for the result of 
the generation process. 

Components of displacement vectors of nodes can be directly set. The assignment of a value to one 
of the components results in limiting the further displacement of a node to a plane. In case of two 
predetermined components a direction of displacement is defined. The same effects are gained by 
defining relations between the components of displacement of a node, but allow limitations, which 
are independent from the axes of the coordinate system. For some nodes of a system such as 
supported nodes even the choice of all components of displacement may be useful. 

In contrast to the components of displacement vectors the exact value of member forces of the 
equilibrated system cannot be directly set. The magnitude of member forces must be adaptable to 
meet equilibrium. However, as the scale of chosen initial magnitudes remains in general unchanged, 
dependencies among members, like a classification into primary and secondary elements, can be 
defined. Besides, a direct influence on the resulting system is also gained by choosing the 
distribution of compressive and tensile forces in the initial system, as the sign of member forces 
remains unchanged unless external loads with strong tangential components are applied. 

The determination of parameters, which are considered to be supernumerary, and the assignment of 
their values are in general arbitrary. Below two strategies for the choice of supernumerary 
parameters are discussed. It is presumed that the supported nodes of a system are fixed to their 



initial positions. The remaining number of 
supernumerary parameters then coincides with 
the number of members in the system.  

 A possible strategy for the choice of 
supernumerary parameters is to assume a 
projective relationship between the initial and 
the equilibrated system, which means that the 
displacements of all nodes are parallel. This is 
obtained by either setting two components of the 
displacement vectors of all nodes to zero or by 
defining two relations between the components 
of the displacement vectors. Possible sets of 
initial member forces, which can be considered 
as supernumerary additionally to the defined 
displacement directions, coincide with the 
member forces, which must be set to uniquely 
determine a force diagram of the initial system. 
Figure 2 shows an example of an equilibrated 
system generated by assuming a projective 
relation. To uniquely determine the force 
diagram (Fig. 2c) the magnitude of an initial 
member force of one segment out of each of the 
curves A to E (Fig 2b) must be chosen (member 
forces along curve F are assumed to be zero). 

Another strategy for the choice of 
supernumerary parameters is to set the 
magnitudes of all initial member forces. This 
approach will always enable an equilibrated 
solution of the system as long as the magnitudes 
of at least two initial member forces per node 
are not zero. Even initial configurations, which 
violate the equilibrium conditions, will always 
result in an equilibrated system, as equilibrium 
can be found by displacement of the nodes. 
Thus, this strategy lends itself especially to 
systems with only a few supported nodes, as 
shown in figure 1a. 

Figures 2 to 4 show different solutions of one 
and the same problem by choosing different sets 
of supernumerary parameters. All systems are 
subjected to the same vertical loads and the 
magnitudes assigned to the supernumerary 
initial member forces coincide for all cases. 
Assuming a projective relation allows the best 
control over the geometry of the resulting 
equilibrated system, as figure 2a illustrates. In 
contrast, the choice of all initial member forces 
leads potentially to deviations from the 
originally defined geometry as the difference 
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ig. 2: a) Equilibrated system generated by using a 

projective relation; b) plan view of the initial 

system; c) force diagram of the initial member 

forces 

 

ig. 3: Equilibrated system generated by choosing all 

initial member forces 

 

ig. 4: Equilibrated system generated by choosing a 

ombination of displacement components and initial 

ember forces 



between the initial system (dashed lines) and the 
horizontal projection of the equilibrated system 
(dotted lines) in figure 3 indicate. Considering 
the efficiency of load transfer the choice of all 
initial member forces leads to the best result for 
the exemplary system. Especially in the 
backmost part of the system the potential of 
biaxial load transfer is considerably better used 
than in the projected system. This results from 
the possibility of all nodes to displace freely, 
such that the most suitable form of the system 
for the assumed member forces is reached. 

Besides the two discussed strategies it is also 
feasible to choose an arbitrary combination of 
parameters as supernumerary. Figure 4 
illustrates a solution generated by using such a 
free combination of parameters. To assure that 
the horizontal projection of the unsupported 
edge of the equilibrated system does not deviate 
from the initial system, the horizontal 
displacement of the corresponding nodes has 
been fixed. In contrast, the remaining nodes of 
the system have not been limited in their 
displacement. Instead, the magnitudes of the 
initial forces of the members between them have 
been set to the same values as in the example 
shown in figure 3. Through the combination of a 
projective relation along the unsupported edge 
and the choice of all member forces in the 
remaining system the advantages of both 
strategies have been unified in the solution: 
control over the decisive geometrical parameters 
and an effective load transfer. A smart 
combination of parameters, which are considered to
complex equilibrated systems. Figure 5 shows a clo
combination of dead and wind loads. It was generat
of all nodes to zero. This results in a limitation of th
Additionally, the initial member forces of the horiz
ring, which was defined to be in tension, for the rem
assumed. 

When choosing displacement components of nodes
displacement directions must be reachable to achiev
6 shows an example of a system generated under th
initial and equilibrated system. Compared to the ex
been curved, such that the initial member forces can
only the equilibrium condition in direction z is viol
and y, in which the displacement of nodes has been
generated. 
 

Fig. 5:  Initial (a) and equilibrated (b) system 

generated by choosing a combination of 

displacement components and initial member 

forces 

 

Fig. 6: Equilibrated system generated by using a 

projective relation based on a curved initial 

system 
 be supernumerary, allows the generation of 
sed strut and tie network, which is subjected to a 
ed by setting the z-components of displacement 
e displacement of nodes to a horizontal plane. 

ontal rings were chosen. Besides the topmost 
aining rings compressive member forces were 

, the scalar equilibrium conditions in the fixed 
e solvability of the system of equations. Figure 
e assumption of a projective relation between 
ample shown in figure 2 the initial system has 
not form an equilibrated state. However, as 

ated and equilibrium can be met in directions x 
 fixed, and equilibrated system could be 



2.4 Lateral Displacement of Loads 

A lateral displacement of loads may occur, unless the displacement of nodes has been defined to be 
tangential to the line of application of the loads. This lateral displacement of external loads violates 
a basic convention of structural mechanics, as the displaced load case is not statically equivalent to 
its initial counterpart. Considering the case that the proposed method is used for form finding. Most 
external loads are dependent on the form of the structure. Dead weight is dependent on the surface 
area and wind is dependent on the actual height of the structure. As loads are dependent on the final 
form of a structure, magnitudes and points of application of loads will adapt to the change of form 
of the structure. Thus, the final form of a structure can only be found in an iterative process and a 
lateral displacement of the initially assumed loads cannot be avoided. In case of using the proposed 
method for the design of a structure with a given form, an iterative process must be used, which 
adapts the applied loads, such that the effects of lateral displacement of loads are compensated. 

2.5 Computer based generation process 

For the generation of equilibrated funicular systems a self-programmed Python [6] application is 
used, which is implemented in the 3D-Design-Software Rhinoceros 5 [7]. The input of the initial 
arrangement of nodes and members is done graphically in Rhinoceros 5. The Python application 
prompts further data like the position of supports and external loads as well as the choice of 
supernumerary parameters using the graphical input methods of Rhinoceros 5. The system of non-
linear equations is created by the Python application and written in a file. The software 
Mathematica 8 [8] is used to determine the solution of the system of equations numerically. 
Mathematica 8 allows a direct control of its Kernel via command line, such that the Python 
application can start the computation process in Mathematica 8 and directly receive the computation 
results. Based on the results a graphical output in Rhinoceros 5 is created by the Python application. 

3. Curved Stress Fields 

Stress fields as described by Drucker [1] and Muttoni et al. [2] allow the consideration of planar 
structural elements subjected to in-plane loads. If a stress field is in addition loaded laterally, it must 
curve to meet equilibrium. A method to develop continuous Curved Stress Fields based on 
differential geometry has been developed [3]. The form of a continuous Curved Stress Field, which 
transfers loads in two predefined directions, is determined by a partial differential equation. Due to 
the generally limited applicability of differential equations, a numerical approach for the 
determination of Curved Stress Fields is proposed based on the generation of the form of funicular 
systems presented in the previous chapter. 

3.1 Strut and Tie Networks and Curved Stress Fields 

The member forces of a strut and tie network must be distributed to determine stresses. In the 
proposed method a constant distribution of stresses over the width between members is assumed. 
The resulting planar stress fields approximate a Curved Stress Field. 



3.2 Internal Forces of Solid Structural 
Surfaces and Curved Stress Fields 

A thrust line is the centre line of the resultant of 
the internal forces of an arch structure. 
Accordingly, a Curved Stress Field represents the 
resultants of the internal forces of a solid 
structural surface. The internal forces of a 
structural surface can be deduced from the stresses 
of the corresponding Curved Stress Field and the 
eccentricity of Curved Stress Field towards the 
centre surface of the structure. For shell-like 
structures a single Curved Stress Field is sufficient 
to represent the internal forces (figure 7 on top). 
Equations (4) to (8) express the relations between 
internal forces of a Curved Stress Field and a shell 
element. 

    (4) 

   (5) 

 (6) 

     (7) 

   (8) 

These equations apply analogously to the 
remaining internal forces. Considering structures 
like plates a second stress field, illustrated at the 
bottom of figure 7, must equilibrate the horizontal 
thrust, which is caused by a Curved Stress Field at 
the supports. 

Due to the holistic consideration of internal forces the
surface can easily be understood. Accordingly, the po
these quasi-infinitely statically indeterminate structur

3.3 Yield Stress Fields – The Limitation of Ecce

A Curved Stress Field and its eccentricity towards th
internal forces of a solid structural surface. To enable
method is proposed, which describes the yield criteria
internal forces. Based on the stresses of the Curved S
upper and a lower bound of the eccentricity of the Cu
bounds of eccentricity form two surfaces, which we d
Stress Field has exactly the form of one of the yield s
will be yielding. As long as the curved stress field lie
of the structure will be yielding, accordingly. This gr
consideration of material strengths in the form findin
coincide with the developed Curved Stress Field, but

 

 

Fig 7: Relation between the internal forces of a 

Curved Stress Field (top) and an element 

of a surface structure (middle) and, in case

of a plate-like structure, the additional 

stress field (bottom) equilibrating the 

horizontal thrust 
 distribution of forces in a solid structural 
ssibilities to directly control load transfer in 
es can be used intuitively. 

ntricity of Curved Stress Fields 

e centre surface of the structure represent the 
 a comparison with the structural resistance a 
 graphically and avoids a conversion to 

tress Field and the decisive yield criterion an 
rved Stress Field can be determined. The 
enote as Yield Stress Fields. If a Curved 
tress fields, all points of the structural surface 
s between the two yield stress fields, no point 
aphically based comparison allows a 
g process, such that a form does not have to 
 may differ from it as long as the Curved Stress 



Field is enclosed by the two Yield Stress Fields. Yield criteria for structural surfaces made of 
reinforced concrete, which consider the relation of stresses of a Curved Stress Field and its 
eccentricity, are currently investigated. 

4. Conclusion 

A general method to create equilibrated strut and tie systems, which is applicable to any 
arrangement of nodes and members, has been developed. Based on this method numerically 
approximated Curved Stress Fields can be determined, which are used to describe the internal loads 
of laterally loaded solid structural surfaces. The combination of a Curved Stress Field with a stress 
field equilibrating the horizontal thrust at the supports is proposed to apply the method of Curved 
Stress Fields to structures like plates, which are purely subjected to flexural loads. Structural 
resistance is considered by Yield Stress Fields, which define the bounds of eccentricity of the 
corresponding Curved Stress Field. 

Compared to Thrust Network Analysis [5] the presented approach to three-dimensional equilibrium 
of strut and tie systems extends the scope of such form finding methods to the entirety of network 
systems subjected to axial forces. As the range of possible applications is widened, the control of 
the generation of equilibrated strut and tie networks becomes less intuitive compared to Thrust 
Network Analysis [5]. However, provided a rough vision of the aspired form and some experience 
in the relationship of form and forces the proposed method represents an efficient tool to create 
equilibrated strut and tie systems. 

Beyond the application of the proposed approach to three-dimensional equilibrium of strut and tie 
systems to curved surfaces, the method has even further potential. The defined general relation 
allows the determination of form and member forces of any system consisting of axially loaded 
members, planar and spatial. 

Due to the holistic consideration of internal forces in Curved Stress Fields a great clearness in the 
illustration of the results is obtained compared to diagrams of the individual forces and moments. 
Besides the proposed direct determination, Curved Stress Fields can generally be used to just 
illustrate internal forces of structural surfaces. As there exists the presented direct relation between 
Curved Stress Fields and internal forces this benefit to the clearness of illustration is generally 
useable, irrespective of the method. 
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